Transformer Sequence Models

CSE354 - Spring 2020
Natural Language Processing

Most NLP Tasks. E.g.

- Sequence Tasks
- Language Modeling
- Machine Translation
- Speech Recognition
- Transformer Networks
- Transformers
- BERT

Evolution of Sequence Modeling

RNNs LSTMs LSTMS with Attention Attention without LSTMs

Multi-level bidirectional RNN (LSTM or GRU)

(Eisenstein, 2018)

Multi-level bidirectional RNN (LSTM or GRU)

(Eisenstein, 2018)

Multi-level bidirectional RNN (LSTM or GRU)

Average of top layer is an embedding (average of concatinated vectors)

(Eisenstein, 2018)

Multi-level bidirectional RNN (LSTM or GRU)

Sometimes just use left-most and right-most hidden state instead

(Eisenstein, 2018)

Sentiment Analysis:

Example Application of Single Representation of document

Sentiment Analysis:

Example Application of Single Representation of document

Sentiment Analysis:

Example Application of Single Representation of document

Encoder

A representation of input.

(Eisenstein, 2018)

Encoder-Decoder

Representing input and converting

(Eisenstein, 2018)

Encoder-Decoder

(Eisenstein, 2018)

Encoder-Decoder

$$
\begin{aligned}
& y_{1} \\
& \hat{f}_{1}
\end{aligned}
$$

$y_{()}$

Encoder-Decoder

Encoder-Decoder

essentially a language model conditioned on the final state from the encoder.

Encoder-Decoder

When applied to new data...

essentially a language model conditioned on the final state from the encoder.

Encoder-Decoder

Language 2: (e.g. English)

Encoder-Decoder

"seq2seq" model

Language 1: (e.g. Chinese)

Encoder-Decoder

Challenge:

- Long distance dependency when translating:

Encoder-Decoder

Challenge:

- Long distance dependency when translating:

Encoder-Decoder

Challenge:

The ball was kicked by kayla.

- Long distance dependency when translating:

Kayla kicked the ball.

Encoder-Decoder

Challenge:

The ball was kicked by kayla.

- Long distance dependency when translating:

Long Distance / Out of order dependencies

Long Distance / Out of order dependencies

Attention

Attention

Attention

$$
c_{h_{i}}=\sum_{n=1}^{|s|} \alpha_{h_{i} \rightarrow s_{n}} s_{n}
$$

Attention

Z is the vector to be attended to (the value in memory). It is typically hidden states of the input (i.e. s_{n}) but can be anything.

$$
c_{h_{i}}=\sum_{n=1}^{|s|} \alpha_{h_{i} \rightarrow s_{n}} z_{n}
$$

Attention

$$
c_{h_{i}}=\sum_{n=1}^{|s|} \alpha_{h_{i} \rightarrow s_{n}} s_{n}
$$

Attention

Attention

Attention

A useful abstraction is to make the vector attended to (the "value vector", Z) separate than the "key vector" (s).

$$
c_{h_{i}}=\sum_{n=1}^{|s|} \alpha_{h_{i} \rightarrow s_{n}} z_{n}
$$

Attention

A useful abstraction is to make the vector attended to (the "value vector", Z) separate than the "key vector" (s).

$$
c_{h_{i}}=\sum_{n=1}^{|s|} \alpha_{h_{i} \rightarrow s_{n}} z_{n}
$$

Attention

Attention

Attention

("synced", 2017)

Attention

Attention

Attention

Machine Translation

Why?

- \$40billion/year industry
- A center piece of many genres of science fiction
- A fairly "universal" problem:
- Language understanding
- Language generation
- Societal benefits of intercultural communication

THE BABEL FISH IS SMALL, YELLOW, LEECHLIKE, AND PROBABLY THE ODDEST THING IN THE UNIVERSE. IT FEEDS ON BRAIN WAVE ENERGY, ABSORBING AL

Machine Translation

Why?

- \$40billion/year industry
- A center piece of many genres of science fiction
- A fairly "universal" problem:
- Language understanding
- Language generation
- Societal benefits of intercultural communication

BABEL FISH

THE BABEL FISH IS SMALL, YELLOW, LEECHLIKE AND PROBABLY THE ODDEST THING IN THE UNIVERSE. IT FEEDS ON BRAIN WAVE ENERGY, ABSORBING A

Machine Translation

Why Neural Network Approach works? (Manning, 2018)

- Joint end-to-end training: learning all parameters at once.
- Exploiting distributed representations (embeddings)
- Exploiting variable-length context
- High quality generation from deep decoders - stronger language models (even when wrong, make sense)

Machine Translation

As an optimization problem (Eisenstein, 2018):

$$
\hat{\boldsymbol{w}}^{(t)}=\underset{\boldsymbol{w}^{(t)}}{\operatorname{argmax}} \Psi\left(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}\right)
$$

Attention

Attention

Attention

Attention

A useful abstraction is to make the vector attended to (the "value vector", Z) separate than the "key vector" (s).

Attention

The Transformer: "Attention-only" models

Attention as weighting a value based on a query and key:

(Eisenstein, 2018)

The Transformer: "Attention-only" models

Output

(Eisenstein, 2018)

The Transformer: "Attention-only" models

Output

(Eisenstein, 2018)

The Transformer: "Attention-only" models

Output

The Transformer: "Attention-only" models

The Transformer: "Attention-only" models

Why?

- Don't need complexity of LSTM/GRU cells
- Constant num edges between words (or input steps)
- Enables "interactions" (i.e. adaptations) between words
- Easy to parallelize -- don't need sequential processing.

The Transformer

Limitation (thus far): Can't capture multiple types of dependencies between words.

The Transformer

Solution: Multi-head attention

Multi-head Attention

Transformer for Encoder-Decoder

Inputs
residuals enable positional information to be passed along

With residuals

Without residuals

Transformer for Encoder-Decoder

Transformer for Encoder-Decoder

Transformer for Encoder-Decoder

 essentially, a language model

Transformer for Encoder-Decoder

Transformer for Encoder-Decoder

Transformer (as of 2017)

"WMT-2014" Data Set. BLEU scores:

EN-DE

GNMT (orig)	24.6	39.9
ConvSeq2Seq	25.2	40.5
Transformer* *	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 8}$

Transformer

- Utilize Self-Attention
- Simple att scoring function (dot product, scaled)
- Added linear layers for Q, K, and V
- Multi-head attention
- Added positional encoding
- Added residual connection
- Simulate decoding by masking

Transformer

Why?

- Don't need complexity of LSTM/GRU cells
- Constant num edges between words (or input steps)
- Enables "interactions" (i.e. adaptations) between words
- Easy to parallelize -- don't need sequential processing.

Drawbacks:

- Only unidirectional by default
- Only a "single-hop" relationship per layer (multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

Drawbacks of Vanilla Transformers:

- Only unidirectional by default
- Only a "single-hop" relationship per layer (multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

- Bidirectional context by "masking" in the middle
- A lot of layers, hidden states, attention heads.

Drawbacks of Vanilla Transformers:

- Only unidirectional by default
- Only a "single-hop" relationship per layer (multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

- Bidirectional context by "masking" in the middle
- A lot of layers, hidden states, attention heads.

She saw the man on the bill with the telescope.
She [mask] the man on the bill [mask] the telescope.

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings (or pre-trained contextualized encoder)

- Bidirectional context by "masking" in the middle
- A lot of layers, hidden states, attention heads.

She saw the man on the bill with the telescope.
She [mask] the man on the bill [mask] the telescope.

Mask 1 in 7 words:

- Too few: expensive, less robust
- Too many: not enough context

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

- Bidirectional context by "masking" in the middle
- A lot of layers, hidden states, attention heads.
- BERT-Base, Cased:

12-layer, 768 -hidden, 12 -heads , 110M parameters

BERT

Bidirectional Encoder Representations from Transformers
Produces contextualized embeddings (or pre-trained contextualized encoder)

- Bidirectional context by "masking" in the middle
- A lot of layers, hidden states, attention heads.
- BERT-Base, Cased:

12-layer, 768 -hidden, 12 -heads , 110M parameters

- BERT-Large, Cased:

24-layer, 1024-hidden, 16-heads, 340M parameters

- BERT-Base, Multilingual Cased:

104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

(Devlin et al., 2019)

BERT

Differences from previous state of the art:

- Bidirectional transformer (through masking)
- Directions jointly trained at once.

BERT

Differences from previous state of the art:

- Bidirectional transformer (through masking)
- Directions jointly trained at once.
- Capture sentence-level relations

BERT

Sentence $A=T h e$ man went to the store. Sentence $\mathbf{B}=$ He bought a gallon of milk. Label = IsNextSentence

```
Sentence A= The man went to the store.
Sentence B = Penguins are flightless.
Labal = NotNextSentence
```


Differences from previous state of the art:

- Bidirectional transformer (through masking)
- Directions jointly trained at once.
- Capture sentence-level relations

BERT

Sentence $A=$ The man went to the store. Sentence $\mathbf{B}=$ He bought a gallon of milk. Label $=$ IsNextSentence

Sentence $A=$ The man went to the store. Sentence B = Penguins are flightless. Label = NotNextSentence

(Devlin et al., 2019)

BERT

Sentence $A=$ The man went to the store. Sentence $\mathbf{B}=$ He bought a gallon of milk. Label $=$ IsNextSentence

Sentence $\mathbf{A}=$ The man went to the store. Sentence B = Penguins are flightless. Label = NotNextSentence

(Devlin et al., 2019)

BERT

Sentence $A=$ The man went to the store. Sentence B=He bought a gallon of milk. Label = IsNextSentence

Sentence $\mathbf{A}=$ The man went Sentence B = Penguins are Label = NotNextSentence

(Devlin et al., 2019)

BERT Performance: e.g. Question Answering

GLUE scores evolution over 2018-2019

Bert: Attention by Layers

https://colab.research.google.com/drive/1vIOJ1lhdujVifH857hvYKIdKPTD9Kid8

(Vig, 2019)

BERT: Pre-training; Fine-tuning

BERT: Pre-training; Fine-tuning

BERT: Pre-training; Fine-tuning

BERT: Pre-training; Fine-tuning

[CLS] vector at start is supposed to capture meaning of whole sequence.

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

BERT: Pre-training; Fine-tuning

[CLS] vector at start is supposed to capture meaning of whole sequence.

Average of top layer (or second to top) also often used.

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

Extra Material:

BERT for Machine Translation:

(Lample \& Conneau, Facebook, 2019)

BERT for Machine Translation:

BERT for Machine Translation:

BERT for Machine Translation:

Neural Machine Translation

Where does neural approach fall short? (Manning, 2018)

- Translation process is mostly a black box -- can't answer "why" for reordering, word choice decisions
- No direct use of semantic or syntactic structures
- Not modeling discourse structure -- only rough sense of how sentences relate to each other. Doesn't model long distance anaphora.

